* Step 1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = x1 + x2 + x3 p(Concat) = 2*x1 + 2*x1*x2 + 2*x1^2 + 2*x2^2 p(Cons_sum) = x3 p(Cons_usual) = x2 + x3 p(Frozen) = x1 + 2*x1*x3 + 2*x1*x4 + x1^2 + x2 + x3 + 2*x3*x4 + x3^2 p(Id) = 1 p(Left) = 0 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = x1*x2 p(Sum_term_var) = x1 p(Term_app) = 1 + x1 + x2 p(Term_inl) = x1 p(Term_inr) = 1 + x1 p(Term_pair) = 1 + x1 + x2 p(Term_sub) = x1 + 2*x1*x2 + x1^2 p(Term_var) = 1 + x1 Following rules are strictly oriented: Concat(Id(),s) = 4 + 2*s + 2*s^2 > s = s Term_sub(Term_app(m,n),s) = 2 + 3*m + 2*m*n + 2*m*s + m^2 + 3*n + 2*n*s + n^2 + 2*s > 1 + m + 2*m*s + m^2 + n + 2*n*s + n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inr(m),s) = 2 + 3*m + 2*m*s + m^2 + 2*s > 1 + m + 2*m*s + m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 2 + 3*m + 2*m*n + 2*m*s + m^2 + 3*n + 2*n*s + n^2 + 2*s > 1 + m + 2*m*s + m^2 + n + 2*n*s + n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*m*x + 2*s + 2*s*x + 3*x + x^2 > m = m Term_sub(Term_var(x),Id()) = 4 + 5*x + x^2 > 1 + x = Term_var(x) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 2*s + 2*s*t + 2*s^2 + 2*t^2 >= 2*s + 2*s*t + 2*s^2 + 2*t^2 = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 2*m + 4*m*s + 2*m*t + 2*m^2 + 2*s + 2*s*t + 2*s^2 + 2*t^2 >= m + 2*m*t + m^2 + 2*s + 2*s*t + 2*s^2 + 2*t^2 = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Frozen(m,Sum_constant(Left()),n,s) = m + 2*m*n + 2*m*s + m^2 + n + 2*n*s + n^2 >= m + 2*m*s + m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = m + 2*m*n + 2*m*s + m^2 + n + 2*n*s + n^2 >= n + 2*n*s + n^2 = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = m + 2*m*n + 2*m*s + m^2 + n + 2*n*s + n^2 + xi >= m + 2*m*s + m^2 + n + 2*n*s + n^2 + xi = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = s*xi >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = s*xi >= s*xi = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = m*xi + s*xi >= s*xi = Sum_sub(xi,s) Sum_sub(xi,Id()) = xi >= xi = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = m + 2*m*n + 2*m*s + 2*m*xi + m^2 + n + 2*n*s + 2*n*xi + n^2 + 2*s*xi + xi + xi^2 >= m + 2*m*n + 2*m*s + m^2 + n + 2*n*s + n^2 + s*xi = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_inl(m),s) = m + 2*m*s + m^2 >= m + 2*m*s + m^2 = Term_inl(Term_sub(m,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 2 + 2*s + 2*s*x + 3*x + x^2 >= 2 + 2*s + 2*s*x + 3*x + x^2 = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*m*x + 2*s + 2*s*x + 3*x + x^2 >= 2 + 2*s + 2*s*x + 3*x + x^2 = Term_sub(Term_var(x),s) * Step 2: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) - Weak TRS: Concat(Id(),s) -> s Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = 1 + x1 + x3 p(Concat) = 2 + x1 + 2*x1*x2 + 2*x1^2 p(Cons_sum) = x1 + x2 + x3 p(Cons_usual) = x2 + x3 p(Frozen) = 1 + 2*x1*x4 + 2*x1^2 + x2 + 2*x3*x4 + 2*x3^2 + x4 p(Id) = 1 p(Left) = 0 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = 0 p(Sum_term_var) = 0 p(Term_app) = x1 + x2 p(Term_inl) = 1 + x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = 2*x1*x2 + 2*x1^2 p(Term_var) = 1 Following rules are strictly oriented: Frozen(m,Sum_constant(Left()),n,s) = 1 + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 + s > 2*m*s + 2*m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 1 + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 + s > 2*n*s + 2*n^2 = Term_sub(n,s) Term_sub(Case(m,xi,n),s) = 2 + 4*m + 4*m*n + 2*m*s + 2*m^2 + 4*n + 2*n*s + 2*n^2 + 2*s > 1 + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 + s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_inl(m),s) = 2 + 4*m + 2*m*s + 2*m^2 + 2*s > 1 + 2*m*s + 2*m^2 = Term_inl(Term_sub(m,s)) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 2 + k + 4*k*s + 2*k*t + 4*k*xi + 2*k^2 + s + 2*s*t + 4*s*xi + 2*s^2 + 2*t*xi + xi + 2*xi^2 >= 2 + k + s + 2*s*t + 2*s^2 + xi = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 2 + m + 4*m*s + 2*m*t + 2*m^2 + s + 2*s*t + 2*s^2 >= 2 + 2*m*t + 2*m^2 + s + 2*s*t + 2*s^2 = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = 5 + 2*s >= s = s Frozen(m,Sum_term_var(xi),n,s) = 1 + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 + s >= 1 + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Id()) = 0 >= 0 = Sum_term_var(xi) Term_sub(Term_app(m,n),s) = 4*m*n + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 >= 2*m*s + 2*m^2 + 2*n*s + 2*n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inr(m),s) = 2*m*s + 2*m^2 >= 2*m*s + 2*m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 4*m*n + 2*m*s + 2*m^2 + 2*n*s + 2*n^2 >= 2*m*s + 2*m^2 + 2*n*s + 2*n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 2 + 2*k + 2*s + 2*xi >= 2 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*s >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*s >= 2 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 4 >= 1 = Term_var(x) * Step 3: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) - Weak TRS: Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = x1 + x3 p(Concat) = 3*x1 + x1*x2 + x1^2 + 2*x2^2 p(Cons_sum) = 1 + x3 p(Cons_usual) = x2 + x3 p(Frozen) = x1*x4 + 2*x2 + x2*x3 + x3*x4 p(Id) = 1 p(Left) = 1 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = 0 p(Sum_term_var) = 0 p(Term_app) = x1 + x2 p(Term_inl) = x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = x1*x2 p(Term_var) = 1 Following rules are strictly oriented: Concat(Cons_sum(xi,k,s),t) = 4 + 5*s + s*t + s^2 + t + 2*t^2 > 1 + 3*s + s*t + s^2 + 2*t^2 = Cons_sum(xi,k,Concat(s,t)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 1 + s > s = Term_sub(Term_var(x),s) Following rules are (at-least) weakly oriented: Concat(Cons_usual(x,m,s),t) = 3*m + 2*m*s + m*t + m^2 + 3*s + s*t + s^2 + 2*t^2 >= m*t + 3*s + s*t + s^2 + 2*t^2 = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = 4 + s + 2*s^2 >= s = s Frozen(m,Sum_constant(Left()),n,s) = m*s + n*s >= m*s = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = m*s + n*s >= n*s = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = m*s + n*s >= m*s + n*s = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Id()) = 0 >= 0 = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = m*s + n*s >= m*s + n*s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = m*s + n*s >= m*s + n*s = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = m*s >= m*s = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = m*s >= m*s = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = m*s + n*s >= m*s + n*s = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_usual(y,m,s)) = m + s >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = m + s >= s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 1 >= 1 = Term_var(x) * Step 4: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = 1 + x1 + x3 p(Concat) = 1 + x1 + 3*x1*x2 + 3*x1^2 + 3*x2 p(Cons_sum) = 1 + x3 p(Cons_usual) = x2 + x3 p(Frozen) = 1 + x1 + 2*x1*x4 + x1^2 + x2 + 2*x3*x4 + x3^2 + x4 p(Id) = 0 p(Left) = 0 p(Right) = 1 p(Sum_constant) = 0 p(Sum_sub) = x2 p(Sum_term_var) = 0 p(Term_app) = x1 + x2 p(Term_inl) = 1 + x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = 2*x1*x2 + x1^2 p(Term_var) = 1 Following rules are strictly oriented: Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + s > 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + s > s = Sum_sub(xi,s) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 5 + 7*s + 3*s*t + 3*s^2 + 6*t >= 2 + s + 3*s*t + 3*s^2 + 3*t = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 1 + m + 6*m*s + 3*m*t + 3*m^2 + s + 3*s*t + 3*s^2 + 3*t >= 1 + 2*m*t + m^2 + s + 3*s*t + 3*s^2 + 3*t = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = 1 + 3*s >= s = s Frozen(m,Sum_constant(Left()),n,s) = 1 + m + 2*m*s + m^2 + 2*n*s + n^2 + s >= 2*m*s + m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 1 + m + 2*m*s + m^2 + 2*n*s + n^2 + s >= 2*n*s + n^2 = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = 1 + m + 2*m*s + m^2 + 2*n*s + n^2 + s >= 1 + 2*m*s + m^2 + 2*n*s + n^2 = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_usual(y,m,s)) = m + s >= s = Sum_sub(xi,s) Sum_sub(xi,Id()) = 0 >= 0 = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = 1 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 2*s >= 1 + m + 2*m*s + m^2 + 2*n*s + n^2 + 2*s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = 2*m*n + 2*m*s + m^2 + 2*n*s + n^2 >= 2*m*s + m^2 + 2*n*s + n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = 1 + 2*m + 2*m*s + m^2 + 2*s >= 1 + 2*m*s + m^2 = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = 2*m*s + m^2 >= 2*m*s + m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 2*m*n + 2*m*s + m^2 + 2*n*s + n^2 >= 2*m*s + m^2 + 2*n*s + n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 3 + 2*s >= 1 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 1 + 2*m + 2*s >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = 1 + 2*m + 2*s >= 1 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 1 >= 1 = Term_var(x) * Step 5: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = x1 + x3 p(Concat) = 3 + 3*x1 + 2*x1*x2 + 3*x2^2 p(Cons_sum) = x2 + x3 p(Cons_usual) = 1 + x1 + x2 + x3 p(Frozen) = 2*x1*x4 + x2 + 2*x2*x3 + 2*x3*x4 p(Id) = 1 p(Left) = 1 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = 0 p(Sum_term_var) = 0 p(Term_app) = x1 + x2 p(Term_inl) = x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = 2*x1*x2 p(Term_var) = 1 Following rules are strictly oriented: Concat(Cons_usual(x,m,s),t) = 6 + 3*m + 2*m*t + 3*s + 2*s*t + 2*t + 2*t*x + 3*t^2 + 3*x > 4 + 2*m*t + 3*s + 2*s*t + 3*t^2 + x = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*s + 2*y > 2*s = Term_sub(Term_var(x),s) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 3 + 3*k + 2*k*t + 3*s + 2*s*t + 3*t^2 >= 3 + k + 3*s + 2*s*t + 3*t^2 = Cons_sum(xi,k,Concat(s,t)) Concat(Id(),s) = 6 + 2*s + 3*s^2 >= s = s Frozen(m,Sum_constant(Left()),n,s) = 2*m*s + 2*n*s >= 2*m*s = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 2*m*s + 2*n*s >= 2*n*s = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = 2*m*s + 2*n*s >= 2*m*s + 2*n*s = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = 0 >= 0 = Sum_sub(xi,s) Sum_sub(xi,Id()) = 0 >= 0 = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = 2*m*s + 2*n*s >= 2*m*s + 2*n*s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = 2*m*s + 2*n*s >= 2*m*s + 2*n*s = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = 2*m*s >= 2*m*s = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = 2*m*s >= 2*m*s = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 2*m*s + 2*n*s >= 2*m*s + 2*n*s = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 2*k + 2*s >= 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 2 + 2*m + 2*s + 2*y >= m = m Term_sub(Term_var(x),Id()) = 2 >= 1 = Term_var(x) * Step 6: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = 1 + x1 + x2 + x3 p(Concat) = 2 + 2*x1 + 3*x1*x2 + 2*x1^2 p(Cons_sum) = 1 + x3 p(Cons_usual) = x2 + x3 p(Frozen) = 3 + 2*x1 + 3*x1*x4 + 2*x1^2 + x2 + 3*x3 + 3*x3*x4 + 2*x3^2 + 2*x4 p(Id) = 1 p(Left) = 1 p(Right) = 1 p(Sum_constant) = 0 p(Sum_sub) = 2*x1 + x2 p(Sum_term_var) = 1 + x1 p(Term_app) = x1 + x2 p(Term_inl) = x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = x1 + 3*x1*x2 + 2*x1^2 p(Term_var) = 1 Following rules are strictly oriented: Frozen(m,Sum_term_var(xi),n,s) = 4 + 2*m + 3*m*s + 2*m^2 + 3*n + 3*n*s + 2*n^2 + 2*s + xi > 1 + m + 3*m*s + 2*m^2 + n + 3*n*s + 2*n^2 + xi = Case(Term_sub(m,s),xi,Term_sub(n,s)) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 6 + 6*s + 3*s*t + 2*s^2 + 3*t >= 3 + 2*s + 3*s*t + 2*s^2 = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 2 + 2*m + 4*m*s + 3*m*t + 2*m^2 + 2*s + 3*s*t + 2*s^2 >= 2 + m + 3*m*t + 2*m^2 + 2*s + 3*s*t + 2*s^2 = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = 6 + 3*s >= s = s Frozen(m,Sum_constant(Left()),n,s) = 3 + 2*m + 3*m*s + 2*m^2 + 3*n + 3*n*s + 2*n^2 + 2*s >= m + 3*m*s + 2*m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 3 + 2*m + 3*m*s + 2*m^2 + 3*n + 3*n*s + 2*n^2 + 2*s >= n + 3*n*s + 2*n^2 = Term_sub(n,s) Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + s + 2*xi >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + s + 2*xi >= s + 2*xi = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = m + s + 2*xi >= s + 2*xi = Sum_sub(xi,s) Sum_sub(xi,Id()) = 1 + 2*xi >= 1 + xi = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = 3 + 5*m + 4*m*n + 3*m*s + 4*m*xi + 2*m^2 + 5*n + 3*n*s + 4*n*xi + 2*n^2 + 3*s + 3*s*xi + 5*xi + 2*xi^2 >= 3 + 2*m + 3*m*s + 2*m^2 + 3*n + 3*n*s + 2*n^2 + 3*s + 2*xi = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = m + 4*m*n + 3*m*s + 2*m^2 + n + 3*n*s + 2*n^2 >= m + 3*m*s + 2*m^2 + n + 3*n*s + 2*n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = m + 3*m*s + 2*m^2 >= m + 3*m*s + 2*m^2 = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = m + 3*m*s + 2*m^2 >= m + 3*m*s + 2*m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = m + 4*m*n + 3*m*s + 2*m^2 + n + 3*n*s + 2*n^2 >= m + 3*m*s + 2*m^2 + n + 3*n*s + 2*n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 6 + 3*s >= 3 + 3*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 3 + 3*m + 3*s >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = 3 + 3*m + 3*s >= 3 + 3*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 6 >= 1 = Term_var(x) * Step 7: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = 1 + x1 + x3 p(Concat) = 1 + 2*x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2 p(Cons_sum) = x3 p(Cons_usual) = x1 + x2 + x3 p(Frozen) = 1 + 2*x1*x4 + x1^2 + x2 + 2*x3*x4 + x3^2 p(Id) = 1 p(Left) = 1 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = x2 p(Sum_term_var) = 0 p(Term_app) = x1 + x2 p(Term_inl) = x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = 2*x1*x2 + x1^2 p(Term_var) = 1 Following rules are strictly oriented: Sum_sub(xi,Id()) = 1 > 0 = Sum_term_var(xi) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = 1 + 2*s + 2*s*t + 2*s^2 + t + t^2 >= 1 + 2*s + 2*s*t + 2*s^2 + t + t^2 = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 1 + 2*m + 4*m*s + 2*m*t + 4*m*x + 2*m^2 + 2*s + 2*s*t + 4*s*x + 2*s^2 + t + 2*t*x + t^2 + 2*x + 2*x^2 >= 1 + 2*m*t + m^2 + 2*s + 2*s*t + 2*s^2 + t + t^2 + x = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = 5 + 3*s + s^2 >= s = s Frozen(m,Sum_constant(Left()),n,s) = 1 + 2*m*s + m^2 + 2*n*s + n^2 >= 2*m*s + m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 1 + 2*m*s + m^2 + 2*n*s + n^2 >= 2*n*s + n^2 = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = 1 + 2*m*s + m^2 + 2*n*s + n^2 >= 1 + 2*m*s + m^2 + 2*n*s + n^2 = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = s >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = s >= s = Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) = m + s + y >= s = Sum_sub(xi,s) Term_sub(Case(m,xi,n),s) = 1 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 2*s >= 1 + 2*m*s + m^2 + 2*n*s + n^2 + s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = 2*m*n + 2*m*s + m^2 + 2*n*s + n^2 >= 2*m*s + m^2 + 2*n*s + n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = 2*m*s + m^2 >= 2*m*s + m^2 = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = 2*m*s + m^2 >= 2*m*s + m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 2*m*n + 2*m*s + m^2 + 2*n*s + n^2 >= 2*m*s + m^2 + 2*n*s + n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 1 + 2*s >= 1 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 1 + 2*m + 2*s + 2*y >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = 1 + 2*m + 2*s + 2*y >= 1 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 3 >= 1 = Term_var(x) * Step 8: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Case) = {1,3}, uargs(Cons_sum) = {3}, uargs(Cons_usual) = {2,3}, uargs(Frozen) = {2}, uargs(Term_app) = {1,2}, uargs(Term_inl) = {1}, uargs(Term_inr) = {1}, uargs(Term_pair) = {1,2} Following symbols are considered usable: {Concat,Frozen,Sum_sub,Term_sub} TcT has computed the following interpretation: p(Case) = 1 + x1 + x3 p(Concat) = x1 + 3*x1*x2 + 2*x1^2 + x2 p(Cons_sum) = x3 p(Cons_usual) = 1 + x1 + x2 + x3 p(Frozen) = 3*x1 + 2*x1*x3 + 2*x1*x4 + 2*x1^2 + x2 + 2*x3 + 2*x3*x4 + 2*x3^2 p(Id) = 0 p(Left) = 1 p(Right) = 0 p(Sum_constant) = 0 p(Sum_sub) = 1 + 2*x2 p(Sum_term_var) = 1 p(Term_app) = x1 + x2 p(Term_inl) = x1 p(Term_inr) = x1 p(Term_pair) = x1 + x2 p(Term_sub) = 2*x1 + 2*x1*x2 + 2*x1^2 p(Term_var) = 1 Following rules are strictly oriented: Sum_sub(xi,Cons_usual(y,m,s)) = 3 + 2*m + 2*s + 2*y > 1 + 2*s = Sum_sub(xi,s) Following rules are (at-least) weakly oriented: Concat(Cons_sum(xi,k,s),t) = s + 3*s*t + 2*s^2 + t >= s + 3*s*t + 2*s^2 + t = Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) = 3 + 5*m + 4*m*s + 3*m*t + 4*m*x + 2*m^2 + 5*s + 3*s*t + 4*s*x + 2*s^2 + 4*t + 3*t*x + 5*x + 2*x^2 >= 1 + 2*m + 2*m*t + 2*m^2 + s + 3*s*t + 2*s^2 + t + x = Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) = s >= s = s Frozen(m,Sum_constant(Left()),n,s) = 3*m + 2*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 >= 2*m + 2*m*s + 2*m^2 = Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) = 3*m + 2*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 >= 2*n + 2*n*s + 2*n^2 = Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) = 1 + 3*m + 2*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 >= 1 + 2*m + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 = Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + 2*s >= 0 = Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + 2*s >= 1 + 2*s = Sum_sub(xi,s) Sum_sub(xi,Id()) = 1 >= 1 = Sum_term_var(xi) Term_sub(Case(m,xi,n),s) = 4 + 6*m + 4*m*n + 2*m*s + 2*m^2 + 6*n + 2*n*s + 2*n^2 + 2*s >= 1 + 3*m + 2*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 + 2*s = Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) = 2*m + 4*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 >= 2*m + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 = Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) = 2*m + 2*m*s + 2*m^2 >= 2*m + 2*m*s + 2*m^2 = Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) = 2*m + 2*m*s + 2*m^2 >= 2*m + 2*m*s + 2*m^2 = Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) = 2*m + 4*m*n + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 >= 2*m + 2*m*s + 2*m^2 + 2*n + 2*n*s + 2*n^2 = Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) = 4 + 2*s >= 4 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) = 6 + 2*m + 2*s + 2*y >= m = m Term_sub(Term_var(x),Cons_usual(y,m,s)) = 6 + 2*m + 2*s + 2*y >= 4 + 2*s = Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) = 4 >= 1 = Term_var(x) * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t)) Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t)) Concat(Id(),s) -> s Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s) Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s) Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s)) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k) Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s) Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s) Sum_sub(xi,Id()) -> Sum_term_var(xi) Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s) Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s)) Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s)) Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s)) Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s) Term_sub(Term_var(x),Id()) -> Term_var(x) - Signature: {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0 ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1} - Obligation: innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))